

Subject Code: MMAT 203

M.Sc. Mathematics Second Semester

Classification of Partial Differential Equation

DR. DINESH KUMAR SHARMA
PROFESSOR IN MATHEMATICS
Department of Mathematics
Maharaja Agrasen University Baddi Solan HP

Classification of Second Order Partial Differential Equation

The general form of a second order P.D.E is

$$A(x,y) \frac{\partial^2 u}{\partial x^2} + B(x,y) \frac{\partial^2 u}{\partial x \partial y} + C(x,y) \frac{\partial^2 u}{\partial y^2} + f(x,y,u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}) = 0 \dots \dots \dots (1)$$

Where A, B, C are constants or continuous functions of $x \otimes y$ possessing continuous partial derivatives and A is positive.

Equation (I) is said to be

- Elliptic, if $B^2 4AC < 0$
- Parabolic, if $B^2 4AC = 0$
- Hyperbolic, if $B^2 4AC > 0$

EXAMPLE -1

Classify the Partial Differential Equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

Solution:

Comparing the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with the general form of PDE

we get
$$A=1$$
 , $B=0$, $\mathcal{C}=0$

So,
$$B^2-4AC=0^2-4(1)(0)=0$$

Hence given P.D.E. is parabolic.

Solution of MCQ - 3

Classify the Partial Differential Equation
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Solution:

Comparing the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ with the general form of PDE

we get
$$A = 1$$
, $B = 0$, $C = 1$

So,
$$B^2-4AC=0^2-4(1)(1)=-4<0$$

Hence given P.D.E. is elliptic.

Solution of MCQ - 4

Classify the Partial Differential Equation
$$\frac{\partial^2 u}{\partial x^2} + 3 \frac{\partial^2 u}{\partial x \partial t} + \frac{\partial^2 u}{\partial t^2} = 0$$

Solution:

Comparing the equation $\frac{\partial^2 u}{\partial x^2} + 3 \frac{\partial^2 u}{\partial x \partial t} + \frac{\partial^2 u}{\partial t^2} = 0$ with the general form of PDE

we get
$$A = 1$$
, $B = 3$, $C = 1$

So,
$$B^2-4AC=3^2-4(1)(1)=5>0$$

Hence given P.D.E. is Hyperbolic.

EXAMPLE - 4 Classify the Partial Differential Equation:

$$ty_{tt} + 3y_{xt} + xy_{xx} + 17y_x + 2y_t = 0 \dots \dots \dots (1)$$

Solution:
$$B^2-4AC=9-4tx$$
, $A=x$

Now Y . Y is

Elliptic of $9-4tx < 0$
 $\Rightarrow tx 7 \frac{9}{4}$

Parabolic of $9-4tx = 0$
 $\Rightarrow tx = \frac{9}{4}$

Hyperbolic of $9-4tx = 0$
 $\Rightarrow 0$

Variable Separable Form

Example-1

Solve the Partial Differential Equation by using the method of Separation of Variables

$$\frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial t} - u = 0, \ u(x,0) = 6e^{-3x}$$
.....(*)

Put (AA) 8 (AAA) 9n u= (c, ecx) (c2 e2 (c-1)+ =) $u = C_1 C_2 e^{cx} e^{\frac{1}{2}(c-1)t}$ general Sol. Given => [u(x,0) = 6 = 3x general solution U(x,t) = GCz ecx ez (c-1) t 92 from General Sol. = C1C2 exeo =) $6e^{3x} = 6e^{2x}$ $|C_1C_2 = 6|$ d C = -3 $u = 6 e^{-(3x+2t)}$ (From general Sol.) the Required Sol. is This

Assignment of Lecture-1

- 1. Classify the PDE's
 - (i) One Dimensional Heat Flow equation

$$a^2 u_{xx} = u_t$$

(ii) One Dimensional Wave equation

$$u_{tt} = a^2 u_{xx}$$

(iii) Two Dimensional Laplace Equation

$$u_{xx} + u_{yy} = 0$$

2. Use the Method of Separation of Variables to solve the equation

$$3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$$
, $u(x,0) = 4e^{-x}$

Answers:

- 1. (i) Parabolic
 - (ii) Hyperbolic
 - (iii) Elliptic

2.
$$u(x, y) = 4 e^{(-x + \frac{3}{2}y)}$$

Thank You